
27-October-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Data structures for polygons

• Winged-edge
• Quad-edge
• Star-vertex

● Convex Hulls in 2D
• Naive
• Insertion
• QuickHull

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Low storage space

● We typically want to acceleration operations on
large data sets. If the storage requirement is too
high, it can cause various performance problems.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Low storage space

● We typically want to acceleration operations on
large data sets. If the storage requirement is too
high, it can cause various performance problems.

Simplicity
● The mesh is the key to many algorithms, if the

implementation is too complex, it may hide subtle
bugs.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Low storage space

● We typically want to acceleration operations on
large data sets. If the storage requirement is too
high, it can cause various performance problems.

Simplicity
● The mesh is the key to many algorithms, if the

implementation is too complex, it may hide subtle
bugs.

Fast retrieval of adjacency information
● Need to know which polygons, vertexes, and edges

are connected to each other.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Ease of manipulation

● Adding and removing points should not be too
expensive.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Ease of manipulation

● Adding and removing points should not be too
expensive.

Scalability
● May want to trade data size for performance per the

needs of the application at hand.

27-October-2007 © Copyright Ian D. Romanick 2007

WingedEdge
The original mesh structure to store connectivity

information.

As the name implies, the focus is the edge.
● Each vertex stores a pointer to one of the edges

radiating from it.

● Each polygon stores a pointer to one of its edges.

● Each edge has 8 pointers:
• Pointers to each of its vertexes.
• Pointers to each of its polygons.
• Pointers to the 4 connecting edges.

27-October-2007 © Copyright Ian D. Romanick 2007

WingedEdge (cont.)

27-October-2007 © Copyright Ian D. Romanick 2007

QuadEdge
Slightly more complex, but simplifies many

operations.
● Allows some degenerate (but useful) situations

such as both end-points of an edge being the same.

Each edge is part of 4 circular lists:
● List of edges for each end point.

● List of edges for each face.

● Each edge, therefore, has 4 “next” pointers.

27-October-2007 © Copyright Ian D. Romanick 2007

QuadEdge (cont.)
Vertex and face structures are minimal.

● Each vertex stores a pointer to one of the edges
radiating from it.

● Each polygon stores a pointer to one of its edges.

27-October-2007 © Copyright Ian D. Romanick 2007

Starvertex
 Instead of focusing on the edge, this structure

focuses on the vertex.
● Edges and faces aren't explicitly stored at all.

Each vertex stores an array of pointers to its
neighbors.
● The neighbor stores a pointer to the next vertex.

● It also stores the index in the next vertex's neighbor
array that is in the same polygon.

27-October-2007 © Copyright Ian D. Romanick 2007

Starvertex (cont.)
struct Neighbor {
 Vertex *v;
 unsigned next;
};

struct Vertex {
 point position;
 unsigned num_neighbors;
 struct Neighbor *neighbors;
};

struct Mesh {
 unsigned num_vertexes;
 struct Vertex *vertexes;
};

27-October-2007 © Copyright Ian D. Romanick 2007

References
http://graphics.ucmerced.edu/publications/2001_JGI_Kallmann.pdf

http://en.wikipedia.org/wiki/Quad-edge

http://graphics.ucmerced.edu/publications/2001_JGI_Kallmann.pdf
http://en.wikipedia.org/wiki/Quad-edge

27-October-2007 © Copyright Ian D. Romanick 2007

Break

27-October-2007 © Copyright Ian D. Romanick 2007

Convex Hulls in 2D
What's the obvious, brute force method?

27-October-2007 © Copyright Ian D. Romanick 2007

Convex Hulls in 2D
What's the obvious, brute force method?

● For each group of 3 non-colinear points:
• Test each remaining point against the triangle.
• If the point is inside, mark it as not on the hull.

● Each point not marked as not-on-the-hull, is on the
hull.

How slow is this?

27-October-2007 © Copyright Ian D. Romanick 2007

Convex Hulls in 2D
What's the obvious, brute force method?

● For each group of 3 non-colinear points:
• Test each remaining point against the triangle.
• If the point is inside, mark it as not on the hull.

● Each point not marked as not-on-the-hull, is on the
hull.

How slow is this?
● O(n4)

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
Assume we already have a partial hull. Can we

incrementally add points?

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
Assume we already have a partial hull. Can we

incrementally add points?

Determine which pair of points on the hull for a
tangent line with the new point.

27-October-2007 © Copyright Ian D. Romanick 2007

Tangent Lines

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
Assume we already have a partial hull. Can we

incrementally add points?

Determine which pair of points on the hull for a
tangent line with the new point.

● If p
new

 is to not on the same side of (p
i-1

, p
i
) and (p

i
,

p
i+1

), then p
i
 is a tangent point.

● If there are no tangent points, then p
new

 is inside the

existing hull.

● If we know p
i
 and p

j
 are tangent points, we know

where add p
new

 and which points to remove.

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
As-is, this algorithm in O(n2).

● How can we make it O(n log n)?

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
As-is, this algorithm in O(n2).

● How can we make it O(n log n)?

 If we sort the points on the hull by their X
coordinate...
● Start the search for tangent points with the point

with the nearest X coordinate.

● This reduces the search for tangent points from
O(n) to O(log n).

● Total run-time is dominated by the sort step.
Sorting is O(n log n).

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull in 2D
QuickHull is named because of similarities to

the QuickSort algorithm.
● Like qsort, it is O(n log n) in the average case, and

O(n2) in the worst case.

● Like qsort, its worst case is a seemingly trivial case.

Algorithm has two distinct phases.
● First phase prepares the data for the second phase.

● Second phase is recursive.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 1
Calculate the extreme quadrilateral of the points

● Calculate the AABB.

● The points on the AABB define the extreme quad.
• If a point is at the corner of the AABB, it may be an

extreme triangle.

Divide the points into 5 groups:
● Points outside each of the 4 edges of the extreme

quad.

● Points inside the extreme quad.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 1

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 2
For each partitioning line segment

● Find the point that is the farthest outside the line
segment. This point forms a triangle with the
existing segment (2 points)

● Divide the group of points outside the segment into
3 groups:
• The points outside each edge of the triangle.
• The points inside the triangle.

● Repeat phase 2 on each group of points outside the
triangle.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 2

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

● Being able to cull many points at each step.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

● Being able to cull many points at each step.

What makes it slow? Or...what is the worst
case?

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

● Being able to cull many points at each step.

What makes it slow? Or...what is the worst
case?
● Not being able to cull many points at each step.

● We can't cull any points at any step if the original
point set defines a convex hull.
• Just like qsort! The worst case there is trying to sort a

sorted list.

27-October-2007 © Copyright Ian D. Romanick 2007

Break

27-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Space partitioning

● Uniform grids

● Octrees (one of my favs)

● k-d trees

Quiz #2

27-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

