
27-October-2007 © Copyright Ian D. Romanick 2007

Data Structures & Algorithms for Geometry

Agenda:
● Data structures for polygons

• Winged-edge
• Quad-edge
• Star-vertex

● Convex Hulls in 2D
• Naive
• Insertion
• QuickHull

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Low storage space

● We typically want to acceleration operations on
large data sets. If the storage requirement is too
high, it can cause various performance problems.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Low storage space

● We typically want to acceleration operations on
large data sets. If the storage requirement is too
high, it can cause various performance problems.

Simplicity
● The mesh is the key to many algorithms, if the

implementation is too complex, it may hide subtle
bugs.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Low storage space

● We typically want to acceleration operations on
large data sets. If the storage requirement is too
high, it can cause various performance problems.

Simplicity
● The mesh is the key to many algorithms, if the

implementation is too complex, it may hide subtle
bugs.

Fast retrieval of adjacency information
● Need to know which polygons, vertexes, and edges

are connected to each other.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Ease of manipulation

● Adding and removing points should not be too
expensive.

27-October-2007 © Copyright Ian D. Romanick 2007

Desirable Mesh Representation Properties
Ease of manipulation

● Adding and removing points should not be too
expensive.

Scalability
● May want to trade data size for performance per the

needs of the application at hand.

27-October-2007 © Copyright Ian D. Romanick 2007

Winged­Edge
The original mesh structure to store connectivity

information.

As the name implies, the focus is the edge.
● Each vertex stores a pointer to one of the edges

radiating from it.

● Each polygon stores a pointer to one of its edges.

● Each edge has 8 pointers:
• Pointers to each of its vertexes.
• Pointers to each of its polygons.
• Pointers to the 4 connecting edges.

27-October-2007 © Copyright Ian D. Romanick 2007

Winged­Edge (cont.)

27-October-2007 © Copyright Ian D. Romanick 2007

Quad­Edge
Slightly more complex, but simplifies many

operations.
● Allows some degenerate (but useful) situations

such as both end-points of an edge being the same.

Each edge is part of 4 circular lists:
● List of edges for each end point.

● List of edges for each face.

● Each edge, therefore, has 4 “next” pointers.

27-October-2007 © Copyright Ian D. Romanick 2007

Quad­Edge (cont.)
Vertex and face structures are minimal.

● Each vertex stores a pointer to one of the edges
radiating from it.

● Each polygon stores a pointer to one of its edges.

27-October-2007 © Copyright Ian D. Romanick 2007

Star­vertex
 Instead of focusing on the edge, this structure

focuses on the vertex.
● Edges and faces aren't explicitly stored at all.

Each vertex stores an array of pointers to its
neighbors.
● The neighbor stores a pointer to the next vertex.

● It also stores the index in the next vertex's neighbor
array that is in the same polygon.

27-October-2007 © Copyright Ian D. Romanick 2007

Star­vertex (cont.)
struct Neighbor {
 Vertex *v;
 unsigned next;
};

struct Vertex {
 point position;
 unsigned num_neighbors;
 struct Neighbor *neighbors;
};

struct Mesh {
 unsigned num_vertexes;
 struct Vertex *vertexes;
};

27-October-2007 © Copyright Ian D. Romanick 2007

References
http://graphics.ucmerced.edu/publications/2001_JGI_Kallmann.pdf

http://en.wikipedia.org/wiki/Quad-edge

http://graphics.ucmerced.edu/publications/2001_JGI_Kallmann.pdf
http://en.wikipedia.org/wiki/Quad-edge

27-October-2007 © Copyright Ian D. Romanick 2007

Break

27-October-2007 © Copyright Ian D. Romanick 2007

Convex Hulls in 2D
What's the obvious, brute force method?

27-October-2007 © Copyright Ian D. Romanick 2007

Convex Hulls in 2D
What's the obvious, brute force method?

● For each group of 3 non-colinear points:
• Test each remaining point against the triangle.
• If the point is inside, mark it as not on the hull.

● Each point not marked as not-on-the-hull, is on the
hull.

How slow is this?

27-October-2007 © Copyright Ian D. Romanick 2007

Convex Hulls in 2D
What's the obvious, brute force method?

● For each group of 3 non-colinear points:
• Test each remaining point against the triangle.
• If the point is inside, mark it as not on the hull.

● Each point not marked as not-on-the-hull, is on the
hull.

How slow is this?
● O(n4)

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
Assume we already have a partial hull. Can we

incrementally add points?

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
Assume we already have a partial hull. Can we

incrementally add points?

Determine which pair of points on the hull for a
tangent line with the new point.

27-October-2007 © Copyright Ian D. Romanick 2007

Tangent Lines

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
Assume we already have a partial hull. Can we

incrementally add points?

Determine which pair of points on the hull for a
tangent line with the new point.

● If p
new

 is to not on the same side of (p
i-1

, p
i
) and (p

i
,

p
i+1

), then p
i
 is a tangent point.

● If there are no tangent points, then p
new

 is inside the

existing hull.

● If we know p
i
 and p

j
 are tangent points, we know

where add p
new

 and which points to remove.

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
As-is, this algorithm in O(n2).

● How can we make it O(n log n)?

27-October-2007 © Copyright Ian D. Romanick 2007

Incremental Hull in 2D
As-is, this algorithm in O(n2).

● How can we make it O(n log n)?

 If we sort the points on the hull by their X
coordinate...
● Start the search for tangent points with the point

with the nearest X coordinate.

● This reduces the search for tangent points from
O(n) to O(log n).

● Total run-time is dominated by the sort step.
Sorting is O(n log n).

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull in 2D
QuickHull is named because of similarities to

the QuickSort algorithm.
● Like qsort, it is O(n log n) in the average case, and

O(n2) in the worst case.

● Like qsort, its worst case is a seemingly trivial case.

Algorithm has two distinct phases.
● First phase prepares the data for the second phase.

● Second phase is recursive.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 1
Calculate the extreme quadrilateral of the points

● Calculate the AABB.

● The points on the AABB define the extreme quad.
• If a point is at the corner of the AABB, it may be an

extreme triangle.

Divide the points into 5 groups:
● Points outside each of the 4 edges of the extreme

quad.

● Points inside the extreme quad.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 1

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 2
For each partitioning line segment

● Find the point that is the farthest outside the line
segment. This point forms a triangle with the
existing segment (2 points)

● Divide the group of points outside the segment into
3 groups:
• The points outside each edge of the triangle.
• The points inside the triangle.

● Repeat phase 2 on each group of points outside the
triangle.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull: phase 2

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

● Being able to cull many points at each step.

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

● Being able to cull many points at each step.

What makes it slow? Or...what is the worst
case?

27-October-2007 © Copyright Ian D. Romanick 2007

QuickHull Performance
What makes it fast?

● Being able to cull many points at each step.

What makes it slow? Or...what is the worst
case?
● Not being able to cull many points at each step.

● We can't cull any points at any step if the original
point set defines a convex hull.
• Just like qsort! The worst case there is trying to sort a

sorted list.

27-October-2007 © Copyright Ian D. Romanick 2007

Break

27-October-2007 © Copyright Ian D. Romanick 2007

Next week...
Space partitioning

● Uniform grids

● Octrees (one of my favs)

● k-d trees

Quiz #2

27-October-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

