Data Structures \& Algorithms for Geometry

\bigcirc Agenda:

- Data structures for polygons
- Winged-edge
- Quad-edge
- Star-vertex
- Convex Hulls in 2D
- Naive
- Insertion
- QuickHull

Desirable Mesh Representation Properties

- Low storage space
- We typically want to acceleration operations on large data sets. If the storage requirement is too high, it can cause various performance problems.

Desirable Mesh Representation Properties

- Low storage space
- We typically want to acceleration operations on large data sets. If the storage requirement is too high, it can cause various performance problems.
- Simplicity
- The mesh is the key to many algorithms, if the implementation is too complex, it may hide subtle bugs.

Desirable Mesh Representation Properties

- Low storage space
- We typically want to acceleration operations on large data sets. If the storage requirement is too high, it can cause various performance problems.
O Simplicity
- The mesh is the key to many algorithms, if the implementation is too complex, it may hide subtle bugs.
- Fast retrieval of adjacency information
- Need to know which polygons, vertexes, and edges

27-omowatate connected to each, otherda zuy

Desirable Mesh Representation Properties

Ə Ease of manipulation

- Adding and removing points should not be too expensive.

Desirable Mesh Representation Properties

Ə Ease of manipulation

- Adding and removing points should not be too expensive.
〇 Scalability
- May want to trade data size for performance per the needs of the application at hand.

Winged-Edge

\rightleftharpoons The original mesh structure to store connectivity information.
θ As the name implies, the focus is the edge.

- Each vertex stores a pointer to one of the edges radiating from it.
- Each polygon stores a pointer to one of its edges.
- Each edge has 8 pointers:
- Pointers to each of its vertexes.
- Pointers to each of its polygons.
- Pointers to the 4 connecting edges.

Winged-Edge (cont.)

Quad-Edge

© Slightly more complex, but simplifies many operations.

- Allows some degenerate (but useful) situations such as both end-points of an edge being the same.
\rightleftharpoons Each edge is part of 4 circular lists:
- List of edges for each end point.
- List of edges for each face.
- Each edge, therefore, has 4 "next" pointers.

Quad-Edge (cont.)

〇 Vertex and face structures are minimal.

- Each vertex stores a pointer to one of the edges radiating from it.
- Each polygon stores a pointer to one of its edges.

Star-vertex

- Instead of focusing on the edge, this structure focuses on the vertex.
- Edges and faces aren't explicitly stored at all.
\rightleftharpoons Each vertex stores an array of pointers to its neighbors.
- The neighbor stores a pointer to the next vertex.
- It also stores the index in the next vertex's neighbor array that is in the same polygon.

Star-vertex (cont.)

struct Neighbor \{
Vertex *v; unsigned next;
\};
struct Vertex \{ point position; unsigned num_neighbors; struct Neighbor *neighbors;
\};
struct Mesh \{
unsigned num_vertexes; struct Vertex *vertexes;
\};

27-October-2007

References

http://graphics.ucmerced.edu/publications/2001_JGI_Kallmann.pdf http://en.wikipedia.org/wiki/Quad-edge

Break

Convex Hulls in 2D

- What's the obvious, brute force method?

Convex Hulls in 2D

© What's the obvious, brute force method?

- For each group of 3 non-colinear points:
- Test each remaining point against the triangle.
- If the point is inside, mark it as not on the hull.
- Each point not marked as not-on-the-hull, is on the hull.
∂ How slow is this?

Convex Hulls in 2D

© What's the obvious, brute force method?

- For each group of 3 non-colinear points:
- Test each remaining point against the triangle.
- If the point is inside, mark it as not on the hull.
- Each point not marked as not-on-the-hull, is on the hull.
© How slow is this?
- O(n^{4})

Incremental Hull in 2D

- Assume we already have a partial hull. Can we incrementally add points?

Incremental Hull in 2D

- Assume we already have a partial hull. Can we incrementally add points?
ค Determine which pair of points on the hull for a tangent line with the new point.

Tangent Lines

Incremental Hull in 2D

- Assume we already have a partial hull. Can we incrementally add points?
- Determine which pair of points on the hull for a tangent line with the new point.
- If $p_{\text {new }}$ is to not on the same side of (p_{i-1}, p_{i}) and (p_{i}, $\left.p_{i+1}\right)$, then p_{i} is a tangent point.
- If there are no tangent points, then $p_{\text {new }}$ is inside the existing hull.
- If we know p_{i} and p_{j} are tangent points, we know 27-Ocober:Where add $p_{\text {new }}$ and whichichnainats to remove.

Incremental Hull in 2D

- As-is, this algorithm in $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- How can we make it $O(n \log n)$?

Incremental Hull in 2D

\rightleftharpoons As-is, this algorithm in $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

- How can we make it O(n $\log \mathrm{n})$?
- lf we sort the points on the hull by their X coordinate...
- Start the search for tangent points with the point with the nearest X coordinate.
- This reduces the search for tangent points from $\mathrm{O}(\mathrm{n})$ to $\mathrm{O}(\log \mathrm{n})$.
- Total run-time is dominated by the sort step. Sorting is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

QuickHull in 2D

๑ QuickHull is named because of similarities to the QuickSort algorithm.

- Like qsort, it is O(n $\log \mathrm{n}$) in the average case, and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in the worst case.
- Like qsort, its worst case is a seemingly trivial case.
\rightleftharpoons Algorithm has two distinct phases.
- First phase prepares the data for the second phase.
- Second phase is recursive.

QuickHull: phase 1

\quad Calculate the extreme quadrilateral of the points

- Calculate the AABB.
- The points on the AABB define the extreme quad.
- If a point is at the corner of the $A A B B$, it may be an extreme triangle.
\quad Divide the points into 5 groups:
- Points outside each of the 4 edges of the extreme quad.
- Points inside the extreme quad.

QuickHull: phase 1

QuickHull: phase 2

\rightleftharpoons For each partitioning line segment

- Find the point that is the farthest outside the line segment. This point forms a triangle with the existing segment (2 points)
- Divide the group of points outside the segment into 3 groups:
- The points outside each edge of the triangle.
- The points inside the triangle.
- Repeat phase 2 on each group of points outside the triangle.

QuickHull: phase 2

© Copyright Ian D. Romanick 2007

QuickHull Performance

〇 What makes it fast?

QuickHull Performance

అ What makes it fast?

- Being able to cull many points at each step.

QuickHull Performance

- What makes it fast?
- Being able to cull many points at each step.
- What makes it slow? Or...what is the worst case?

QuickHull Performance

Ө What makes it fast?

- Being able to cull many points at each step.
- What makes it slow? Or...what is the worst case?
- Not being able to cull many points at each step.
- We can't cull any points at any step if the original point set defines a convex hull.
- Just like qsort! The worst case there is trying to sort a sorted list.

Break

Next week...

- Space partitioning
- Uniform grids
- Octrees (one of my favs)
- k-d trees

○ Quiz \#2

Legal Statement

- This work represents the view of the authors and does not necessarily represent the view of IBM or the Art Institute of Portland.
○ OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other countries, or both.
- Khronos and OpenGL ES are trademarks of the Khronos Group.
- Other company, product, and service names may be trademarks or service marks of others.

